Kh. G. Pulatova, Z. F. Ismailov, and S. Yu. Yunusov

Khimiya Prirodnykh Soedinenii, Vol. 3, No. 1, pp. 67-68, 1967

The alkaloid thalicmidine isolated from the roots of Thalictrum minus by S. Yu. Yunusov and N. N. Progressov [1] contains three methoxy groups and one hydroxy group (broad band in the IR spectrum at 3200-3500 cm⁻¹). The UV spectrum of thalicmidine has three maxima at 220, 280, and 305 mµ (log & 4.52, 4.12, 4.12), which are characteristic for 2, 3, 5, 6-tetrasubstituted aporphins [2]. Methylation of thalicmidine has given glaucine (Ia) and oxidation has yielded m-hemipinic acid. Consequently, the hydroxy group must occupy position 5 or 6 [3, 4]. Since thalicmidine is not identical with glaucentrine, only position 6 remains possible for the hydroxy group (Ib).

However, recently glaucentrine has been shown to be identical with corydine. Consequently, the position of the hydroxy group in thalicmidine still remains obscure.

A quaternary base with a hydroxy group in position 5 (IIa) has been isolated from Fagara tinguassoiba [5, 7]. The results of a direct comparison of some derivatives of thalicmidine (IIb) and the alkaloid from F. tinguassoiba (IIa), and also the IR spectra of their picrates, have shown that they are not identical.

Derivatives	Alkaloid from F. tinguassoiba	N-methyl- thalicmidine
Iodide Picrate Chloride	$224-226\atop146-151^{\circ}$ [a] _D $+26^{\circ}$ $215-219^{\circ}$	$234-236^{\circ}$ [α] _D +18.7° $196-198^{\circ}$ $238-240^{\circ}$

Thus, the structure of thalicmidine (Ib) that we have proposed is apparently correct. The statement by some authors that the hydroxy group in thalicmidine is in position 3 (Ic) is unfounded [2, 6]. The production of m-hemipinic acid by the oxidation of thalicmidine [3, 4] excludes the presence of a hydroxy group in ring A.

$$R_1O$$
 R_2O
 R_2O
 R_2O
 R_3
 $R_4 = R_2 = CH_3$
 $R_4 = CH_3, R_2 = H$
 $R_4 = CH_3, R_2 = H$
 $R_4 = CH_3, R_2 = H$
 $R_5 = CH_3, R_2 = H$
 $R_5 = CH_3, R_2 = H$
 $R_5 = CH_3, R_2 = H$

A sample of the picrate of the tertiary base from Fagara tinguassoiba was given to us by Dr. L. Marion.

REFERENCES

- 1. S. Yu. Yunusov and N. N. Progressov, ZhOKh, 20, 1151, 1950.
- 2. M. Shamma and W. A. Slusarchyk, Chem. rev., 64, 59, 1964.
- 3. S. Yu. Yunusov and N. N. Progressov, ZhOKh, 22, 1047, 1952.
- 4. S. Yu. Yunusov and N. N. Progressov, DAN UzSSR, no. 2, 23, 1951.
- 5. N. V. Riggs, L. Antonaccio, and L. Marion, Canad. J. Chem., 39, 1330, 1961.
- 6. P. S. Clezy, A. W. Nichol, and E. Gellert, Exper., 19, 1, 1963.
- 7. M. Shamma and W. A. Slusarchyk, Tetrah. Lett., 20, 1509, 1965.

10 September 1966

Institute of the Chemistry of Plant Substances,
AS UzSSR